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ABSTRACT 

A brief review is given of the developments since the ICANS-XIII meeting made in the neutron 
instrument design codes using the Monte Carlo library MCLIB. Much of the effort has been to 
assure that the library and the executing code MC_RUN connect efficiently with the World Wide 
Web application MC-Web as part of the Los Alamos Neutron Instrument Simulation Package 
(NISP). Since one of the most important features of MCLIB is its open structure and capability to 
incorporate any possible neutron transport or scattering algorithm, this document describes the 
current procedure that would be used by an outside user to add a feature to MCLIB. Details of the 
calling sequence of the core subroutine OPERATE are discussed, and questions of style are 
considered and additional guidelines given. Suggestions for standardization are solicited, as well 
as code for new algorithms. 

1. Introduction 

Monte Carlo is a method to integrate over a large number of variables. Random numbers are 
used to select a value for each variable, and the integrand is evaluated. The process is repeated a 
large number of times and the resulting values are averaged. For a neutron transport problem, 
we first select a neutron from the source distribution, and project it through the instrument using 
either deterministic or probabilistic algorithms to describe its interaction whenever it hits 
something. If it hits a detector, we tally it in a histogram representing where and when it was 
detected. This is intended to simulate the process of running an actual experiment (but it is much 
slower). Monte Carlo is a useful supplement to analytical treatment of an instrument, in 
particular to check and demonstrate “non-intuitive” focusing arrangements, but should never be 
used as a substitute for thinking. (We are grateful to Jack Carpenter for reminding us of this 
limitation of Monte Carlo.) 
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The approach generally used in the MCLIB library routines is to treat the optical properties of 
neutron transport rather than microscopic nuclear interactions (although microscopic processes 
may be included in specific algorithms). The philosophy and structure of MCLIB (and of the 
executing program MC_RUN) were presented at ICANS-XIII [l], and that report, augmented by 
the proceedings of the 1996 Berkeley Workshop [2], has become the reference document for 
MCLIB. The current version may be accessed by anonymous ftp from 

ftp://azoth.lansce.lanl.gov/pub/mclib/document 
in three formats. Note that this document is updated frequently as features are added to the 
library. The source codes are also available through this ftp site. 

The most exciting new features to report are the establishment of a Web application and 
standardization of the code under the name Neutron Instrument Simulation Package (NISP). 
That work is reported elsewhere in these proceedings [3], but all users and prospective users of 
NISP are urged to visit the web site at 

http://bayberry.lanl.gov/lansce/Welcome.html 

2. New Library Features and MC-RUN Updates 

There are two new options for neutron sources. You may specify a file of individual neutron 
histories generated as a monitor output from a previous execution of MC_RUN, or you may 
specify a square (uniform) distribution of velocities. 

A new region type is type 14, “toroidal mirror.” Since the geometry of surfaces and regions is 
limited to quadratic, a torus can not be defined as a simple surface. This type illustrates how any 
form of geometry may be implemented within a region, which is itself bounded by quadratic 
surfaces. 

The definitions of most sample types have been modified to allow the final directions of the 
neutrons to be limited in solid angle, for the purpose of variance reduction when detectors don’t 
cover 4n. In particular, the isotropic scattering type 32 may have its solid angle defined by 
bands of direction cosines with respect to each axis. An auxiliary routine dOMEGA is provided to 
compute the resulting solid angle (if any!) for normalization. Sample types that are not isotropic 
(30, 34, and 36) can not be randomized in polar angle, but may have the azimuthal angle biased 
to illuminate specific detector geometries. Note that whenever solid-angle limits are used, 
multiple scattering is turned off. Another change in type 32 is that you may now specify a 
spectrum of s-function energy changes instead of a single energy. 

The encoding of two-dimensional detectors (type 43) now includes cylindrical and spherical 
coordinates as subtypes, as well as rectilinear and plane-polar. This makes the use of detectors 
with curved surfaces easier. 

Many additions have been made to program MC-RUN to assist in debugging and to study 
“unexpected” events. A monitor (.MON) file may be written to record the passage of neutrons 
across a given surface (and this file may be used subsequently as a source file, see above). It is 
now possible to flag a surface preceding the monitor surface for correlation; then any neutron 
that crosses the correlation surface and subsequently reaches the monitor surface will be 
recorded in a .COR file. Another option is that the .COR file may record where the neutron was 
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immediately before reaching the surface being monitored. These files are direct-access binary, 
so special programs (such as SUPER-KNOW) must be adapted to extract the relevant information. 

In response to a request at a recent workshop [4], a backtracking feature has been implemented. 
First, a neutron may be flagged as “bad” by some procedure during its transport, for example by 
coming through a chopper opening out of phase. If such a “bad” neutron reaches either the 
sample or any detector, then the complete history of surface and region crossings of that neutron 
will be written to a .BAD file in an ASCII format allowing subsequent study. 

More variance-reduction features have been incorporated, also in response to the workshop [4]. 
In addition to the solid-angle biasing described above, up to 32 levels of splitting (or secondary 
neutron production) may be applied to a neutron. This includes multiple use of histories 
reaching the sample, or doubling when crossing flagged surfaces. User routines have the 
capability to split or create neutrons, as will be discussed below. 

3. Program MC-RUN 

A flow chart of the execution program MC_RUN is given in Fig. 1. There are three nested loops: 
the outermost loop is over the number of source neutrons (with a branch for stored and repeated 
neutrons); the next is transport between regions, determination of the subsequent region, and the 
interaction at the surface; and the innermost loop is what happens within any given region 
(subroutine OPERATE). All geometric relations between regions are handled in this main code, 
and all physics and algorithms of elements within regions are accessed through OPERATE, either 

Figure 1. Flow diagram of program MC-RUN 
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as in-line code or as external procedures. The operation loop continues until the neutron reaches 
an exit surface of the region (or vanishes). Possible outputs of the operation include storing a 
created neutron for subsequent tracking, detection of the neutron, or absorption. It is within this 
loop that the MCLIB library is applied, and it is here that new features and modules may be 
inserted. This report is intended to assist in the incorporation of such new features. 

4. Structures used in MCLIB / MC-RUN 

The source codes for the Monte Carlo Library MCLIB and MC_RUN are written in a subset of 
ANSI-standard Fortran 90 (F90). To improve portability, only F90 features that are also 
included as “VAX extensions” to F77 are used (F77NAX). Declaration statements use the F77 
format, which is allowed in F90. Two exceptions to the F90 standard are that the character “.” is 
used as the structure delimiter instead of “%“, and that structures are defined and declared in 
STRUCTURE and RECORD statements instead of TYPE; these are again to improve portability to 
F77NAX compilers.. F90 is a structured language, but not object oriented. Some concepts of 
object-oriented programming are used, but the emphasis is placed on execution speed. 

The coordinate system used in MCLIB assumes that the beam axis is generally in the z-direction, 
the x-direction is to the particle’s right as it travels in the z-direction, and the y-direction is 
always vertically upward (because gravity always acts in the negative y-direction). This left- 
handed coordinate system was chosen to match the X-Y coordinates of a plane detector in small- 
angle geometry. A module may rotate coordinates in the X-Z plane, but changing the direction 
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Figure 2. Structures used in MCLIB and MC-RUN 
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of gravity is strongly discouraged. The fundamental structures are PARTICLE, SURFACE, 

REGION, and MC-ELEMENT. These are illustrated in Fig. 2, and defined in an include file, 
MC_GEOM.INC, which is available with the source code at 

ftp://azoth.lansce.lanl.gov/pub/mclib/fortran 
All elements in PARTICLE and SURFACE structures are REAL*4. Compared to REAL*& there is a 
significant reduction of the length of history files containing large numbers of particles, but there 
are some limitations in defining surfaces, which will be described below. 

The elements of a PARTICLE structure are 
(X, Y, Z) = position of the particle (m) 
(VX, VY, VZ) = particle velocity (m/j_&) 
TOF = particle time-of-flight (ps) 
M = atomic mass number, e.g., 1 for a neutron or 0 for a photon 
Q = atomic number of particle, e.g., 0 for a neutron or +l for a proton 
WT = statistical weight of particle. A single tracked history may represent more or less 

than one neutron. This allows source weighting and the tracking of low- 
probability events for variance reduction. 

(PX, PY, PZ) = average polarization vector of particle beam. The magnitude of the 
vector represents the degree of polarization. 

A module may use and change any of the components of a particle sent to it. For instance, 
motion is accomplished by updating X, Y, Z, and TOF, or partial absorption by decreasing WT. A 
particle may be split by making a copy and apportioning the original WT between the two 
instances. 

The elements of a SURFACE structure are the ten coefficients of a general quadratic surface and a 
parameter describing the surface roughness. The equation of a surface is 

Ax2 + Bx + Cy2 + Dy + Ez2 + Fz + G + Pxy + Qzy + Rzx = 0 (1) 

The use of single-precision real numbers limits the definitions of surfaces with quadratic terms if 
they are far from the origin. This is not a severe problem if the origin of the coordinate system is 
placed at the sample location, since the quadratic surfaces used tend to be centered near the 
sample. The surface roughness parameter BETA is presently defined only for values between 0 
and +l as a long-range waviness. It is the maximum slope error in a cosine distribution, with 

rms = 0.58 BETA for small values of BETA. We are exploring representation of surface 
irregularities on shorter length scales, which could be represented by using the sign of BETA as a 
flag, or by using values > 1. A module may use any predefined surfaces, and may create a 
surface for its internal use, but must not modify any existing surfaces. Any surface more 
complex than quadratic (e.g., a toroid) can only be defined within a module. 

A REGION structure is a vector IGEOM of signed integers (INTEGER*2) which give the 
relationship of the region to every surface. If IGEOM(JSURF) = 0, the region is not bounded by 
surface JSURF. If not zero, then the sign of the integer defines which side of the surface is’ 
“inside” the region by the sign of eq. (1) when evaluated at a point (x, y, z). That is, in order for 
a particle to be inside the region, the left side of eq. (1) must have the same sign as IGEOM for the 
surface. (If eq. (1) evaluates to 0, then lSf and 2nd derivatives will also be considered.) The 
numeric value of IGEOM is also significant: 

1: ordinary surface described by roughness BETA, with possibility of refraction or critical 
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reflection depending on wavelength and relative index of refraction 
2.: totally reflecting surface (from inside the region) 
4: totally absorbing surface when hit from inside the region; i.e., no exit 
5: special conditions apply before exiting region; for instance, a coordinate transform may 

be required. Then treat as type 1. An example of this usage is given below. 
6: treat as type 1, but split the particle into 2 equal instances after crossing 

The value of IGEOM is increased by 10 if the surface is that of a region “embedded” within the 
region being defined (embedded and reentrant regions are discussed in the MCLIB Document). 
Modules have access to the region definitions, but should not have to deal with anything but the 
sign of IGEOM. No changes of region definitions are allowed in modules. 

The structure MC-ELEMENT is most relevant when writing a module, because this is the structure 
used to define the contents of all regions. There is a one-to-one correspondence of elements and 
regions. An element has a 40-character NAME and an integer pointer INDEX into an array of 
REAL*4 parameters, PARAM. (A special case is void regions, which have INDEX = 0.) The 
number in the PARAM block at the location INDEX is the ELMNTJYPE of the region; the integer 
part of the value is the type and fractions may be used for subtypes. Any number of parameters 
may be defined; for each defined type nn, there is also a parameter NUMBER_nn that is one more 
than the number of parameters defined. The author of a module must obtain or assign a type 
number (70 through 79 are available for ad hoc or development use), and must define variables 
with global names. (Global names are necessary so that the creator of the geometry file will 
have exactly the same definitions as the executing program!) Descriptive names are preferred, 
and a prefix may be used to identify the relevant module; documentation of the meanings of the 
variables is essential. The names are defined in PARAMETER statements as integer offsets in the 
PARAM block, counting from 0 at the location referenced by INDEX. The complete list of defined 
types is given in the include file MC_ELMNT.INC, found at the ftp site. A module may modify an 
entry in the PARAM block for its own later use, but not as a mechanism for returning a value to 
MC-RUN. Use of static local variables (SAVE statements) is preferred over modifying PARAM 

entries. The NAME variable may be used to pass a file name to the module. The communication 
between MC-RUN and the modules is described in the next section. Note that there are rough 
“classes” of modules, organized by decades of the type number. In particular, samples are in the 
range 30-39 and detectors in the range 40-49. Such classes share common variable names. 

5. Subroutine OPERATE 

This subroutine contains the “methods” for every type of element, either in-line or as external 
subroutine calls. The task of an author of a new module is to incorporate the new type into 
OPERATE by including a new case. For development, dummy routines for cases 70-79 are pre- 
linked, so that a user may substitute his own routine for the dummy one without having to 
modify OPERATE. For examples and to show the case structure, excerpts from the subroutine 
are listed in Appendix A. All of the routines in the MCLIB library as listed and described in the 
MCLIB document are available to use in support of new modules. The calling sequence of 
OPERATE contains arguments to support a variety of classes of elements; for instance, detectors 
need to return encoding information. The arguments in the calling sequence are listed in order in 
Table 1. Any of these may also be used as arguments to additional lower-level subroutines. All 
arguments are passed by reference, so the programmer has the responsibility to use care in 
changing values. 
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Table 1. Arguments in Calling Sequence of Subroutine OPERATE 

input Name Type Description output 

Neutron PART Structure A PARTICLE structure. Position, velocity, Updated Neutron 
statistical weight, & polarization may change 
depending on the case. 

Escape Distance EXDIST REAL*4 Recompute if velocity changes. Will be 0 if New Escape Distance 
the neutron is moved all the way to an exit 
surface. 

Parameters of Region PARAMS REAL*4 From the PARAM array. First value is type 
(O:*) number of the region, used in CASE 

structure. 
MC_GEOM Structure GEOM Structure All surface and region geometry definitions. 

Region Number IREG INT*4 

Entrance Surface JSURF INT*4 

Exit Surface KSURF INT*4 Surface toward which the velocity points; New Exit Surface 
updated if direction changes; set to negative 
‘if reflection occurs. 

Name of Region NAME CHAR*40 The region name may be an external file 
‘name, e.g., an S(o$) file for inelastic 
scattering. 

Modified if region contains subregions, e.g., 
chopper or Soller-slit package. 

Surface neutron is on initially, or 0 if not on 
a surface. 

Subregion Number 

Transmission Flag TRANSMIT LOGICAL Used by sample class to know when to split 
neutron into scattered and non-scattered 
histories. 

FLAG LOGICAL Set to .FALSE. if something is peculiar, e.g., Bad-Neutron Flag 
neutron in wrong chopper frame. 

PART-2 Structure Typically used to save the “scattered” Second Neutron 
neutron independently from “transmitted.” 

DET_WT REAL*4 Non-zero output identifies region as Detected Statistical 
detector. Includes detector efficiency. Weight 

IX INT*4 First coordinate of position-sensitive Detector Cell Number, IX 
detector. 

IY INT*4 Second coordinate (if 2D detector). Detector Cell Number, IY 

Random-Number ISEED 
Seed 

INT*4 A single pseudo-random sequence is used Random-Number Seed 
throughout the package. 

The first argument, PART, is the neutron being tracked. The set of values from the PARAM block 
that is specific to this element is passed as a vector PARAMS. Values may thus be referenced in 
the form PARAMS(ParameterName), e.g., 

NSIG = PARAMS(NSIGMA0) + PARAMS(NSIGMAV)/SQRT(PART.VX**2+PART.VY**2+PART.VZ**2) 

(this and other examples will be found in context in Appendix A). Note that PARAMS is declared 
in OPERATE to begin with index 0 (the type number), and this is a useful convention to use in 
lower-level subroutines as well so that the indexing of locations in the block needs no offset. 

When OPERATE is called, MC-RUN has already determined the distance EXDIST to escape from 
the region along the initial trajectory (including gravity), and this is passed as the second 
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argument (useful for determining attenuation). If the velocity vector (magnitude or direction) 
changes within the module, EXDIST must be recomputed by a call to DTOEX. This allows 
OPERATE to loop internally (instead of returning to MC-RUN at each step) for effects such as 
multiple scattering, but it means that the entire geometry structure (GEOM) and the region and 
surface numbers (IREG, JSURF, and KSURF) must also be passed as arguments. For an example 
of multiple scattering, see type 36 in Appendix A. By default, OPERATE will move the particle 
by the distance EXDIST and will therefore return with EXDIST = 0; to avoid this for a particular 
case, end the case with a RETURN statement instead of falling through. IREG and KSURF are also 
output parameters in special cases. The final example in this section shows the use of 
subregions, and type 13 (Appendix A) shows negative KSURF used as a flag for reflection. The 
development cases 70-74 have calling sequences without detector binning or instrument 
geometry, and cases 75-79 have the complete calling sequence of OPERATE. 

The calling sequence includes two logical variables for state information. MC-RUN expects to 
track neutrons transmitted through a sample as well as scattered neutrons. The flag TRANSMIT is 
initially .TRUE. and is used to identify the first encounter of a neutron with the sample so that the 
code will generate a second neutron (PART_2). That neutron will be scattered on a subsequent 
entry when TRANSMIT = .FALSE. (see type 36 in Appendix A). Any call to OPERATE is allowed 
to generate a new PART_2. The output variable FLAG is a debugging aide. When a module 
recognizes that something about the neutron deserves attention, such as passing through a 
chopper in the wrong frame (see type 20 in Appendix A), FLAG is set to .FALSE.. If such a “bad” 
neutron subsequently hits a sample or a detector, then MC-RUN will tally it and (if requested) 
will also write its full history to a file. This feature may also be used in ad hoc versions of 
OPERATE to address rare occurrences. 

All histogramming functions are performed by MC-RUN, but detector encoding is a function of a 
detector-class element. The statistical weight detected and one or two cell numbers are returned 
through the calling sequence respectively as DET_WT, IX, and IY. (The example in Appendix C, 
type 43, also shows how all of the arithmetic of a module may be moved to a separate procedure, 
in this case a call to DET_2D.) Time-of-flight slices, which may be non-linear and different for 
each detector, are computed in MC-RUN because they involve storing arrays of slice boundaries 
and (since dynamic memory allocation is not available in F77NAX) all variable-length memory 
arrays are reserved for management in the main program. The final argument is ISEED, the seed 
of the random-number generator, which is propagated through all levels of subroutines in MCLIB 

so that a single pseudo-random number sequence is used. 

An example of a complex region (containing subregions, and also using a coordinate 
transformation) is a multi-slit collimator, type 11 in Appendix A. This type encompasses 
Sollers, tapered Sollers, and benders. Instead of defining every surface and region explicitly, the 
package is defined by its external geometry and by the slit spacing, taper (if any), and bend angle 
(for a bender consisting of cylindrical slits). The code for type 11 uses the slit spacing to 
determine which slit number the neutron is entering, and then translates and rotates the 
coordinate system so that the neutron appears to be in the one slit which is defined. A logical 
variable identifying that the neutron is in this type of region and the parameters used for the 
coordinate transformation are stored in static local variables so that they will be available to undo 
the transform when the neutron exits the region. There may be as many as five subregions to 
describe one opening: the lumen, the coating materials on each side, and half of the substrate on 
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each side. (Alternatively if the center of the array is a blade instead of an opening, the 
subregions could be the substrate, the two coatings, and half of the lumen on each side of the 
substrate.) The code tests the five regions immediately following the type 11 region in the 
geometry definitions, sets IREG to the proper value, and executes a RETURN without moving the 
particle. The entrance and exit surfaces and also the outer longitudinal surfaces of the slit 
descriptive regions must be tagged in the REGION structure with a value of 5 so that MC-RUN 

will call EXIT_REG (a second entry point in OPERATE) when a neutron crosses. This entry point 
is shown at the end of Appendix C, including the code relating to type 11. There are two 
situations. If the particle is still within the exterior geometry of the slit package (i.e., still within 
the bounds of the type 11 region), then it must be crossing from one slit to another within the 
package. The slit number is changed and the coordinates transformed again so that it is once 
more entering the defined opening. If on the other hand the neutron is leaving the whole 
package, then the coordinate system is reconverted to match the outside world. 
This example also shows how a permanent change of the coordinate system may occur in an 
element. If the type 11 region was a bender, then the z-axis is rotated. Another example of 
rotation in the X-Z plane is a crystal monochromator (see type 13 in Appendix A). 

6. Style and Guidelines 

Appendix A may also be used as a style guide for writing code for inclusion in MCLIB. By 
nature, questions of “style” are arbitrary, but some level of consistency will assist later 
generations in maintaining the code package. Upper case is preferred except for variable names 
that make more sense with mixed or lower case characters. Continuation lines should be written 
to be compatible with either fixed or floating format Fortran, by placing “&” in column 73 of the 
line to be continued and another “&” in column 6 of the continuation line. Always use IMPLICIT 

NONE before the INCLUDE statements or before any declaration statements, and declare every 
variable. DO and IF blocks should be indented by 3 characters. Numbered statements should be 
avoided. Lots of comments throughout, and enough spaces in code lines to see where the 
operators are. Make me jealous by writing code that is easier to read and to understand than 
mine (as well as being correct, of course). 

All lines between the comment lines “C++” and “C--” will be included in the subroutine 
abstracts in Appendix B of the MCLIB Document. The “required” information includes a brief 
description of the purpose and methods used in the procedure, the original author and date and 
any references to publications or other sources of algorithms, the update history, any INCLUDE 
statements, descriptions and Fortran declarations of all variables in the calling sequence, and a 
list of any external routines called and declarations for those which are functions. For more 
examples, see the MCLIB Document. The complete source codes .are also available (in 3 file 
formats) at the anonymous ftp site,ftp://azoth.lansce.lanl.gov/pub/mclib/fortran. 

Physical and mathematical constants should be defined and placed in PARAMETER statements at 
the beginning of the procedure, or better yet given global names and included in the file 
CONSTANT.INC so that everyone will be using the same values. The present quantities in 
CONSTANT.INC are 

GOVER2 = half the acceleration of gravity = 4.858x 10-r* m/ps* 

HOVERM = Planks constant/neutron mass = 0.0039560339 m-&ts 
HSQOV2M = Planks constant squared over 2 Mneutron = 0.08 18 145347 eV-A2 
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PRECES_N = neutron magnetic-moment precession rate factor 
= 27rp,,M,/h’ = 23 160.45 1 radianm/m/A 

ROOTM_2 = square root of half the neutron mass = 72.298 eV”.s-ps/m 
TWOPI = 27r = 6.283 185307 

The units used throughout MCLIB are distance in m, time in ps, wavelength in A, and energy in 
eV. 

The examples in the previous section of this report describe operations within a region. It may 
be desired also to consider refraction and reflection when crossing the surface of a region, and 
this requires a method to determine the index of refraction (or equivalently the scattering-length 
density). Presently only two element types (amorphous materials and supermirrors) provide this 
information, through the complex function GET-RHO. Addition of other types to this function 
should be straightforward. 

7. Conclusion 

This report has described the current status of the structure of the MCLIB library, and the 
procedure by which new features can be added to the low-level code. We propose this as a 
standard. However, many features are arbitrary accidents of history, and we are requesting input 
from users to determine what should be changed and what must be changed before the standard 
is established. Although we have tried to describe the functionality requirements that led to the 
present status, it must be expected that improvements will be made both from the point of view 
of computer science and also run-time efficiency (which we take to be the ultimate test). Please 
address any questions and suggestions to PASeeger@aol.com. 
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Appendix A. Excerpts from Subroutine OPERATE 

c++ 
c*x******** OPERATE ********** 
C********** E X I T _ R E G ********** 

SUBROUTINE OPERATE(PART, EXDIST, PARAMS, GEOM, IREG, JSURF, KSURF,& 
EC NAME, TRANSMIT, FLAG, PART_2, DET_WT, & 
& IX, IY, ISEED) 

C EXIT_REG(PART, GEOM, IREG, JSURF) 
C 
C Routines to operate on a particle within (or exiting from) a region 
C containing material, collimation elements, time-dependent devices, 
C samples, or detectors. Included region types/actions are 
C 1 
C 2 
C 5 
C 6 
C 11 
C 12 
C 13 
C 
C 14 
C 
C 20 
C 22 
C 23 
C 30 
C 
C 32 
C 
C 34 
C 
C 35 
C 
C 36 
C 
C 40 
C 41 
C 42 
C\ 43 
C 44 
C 90 
C 

amorphous unpolarized material: move to exit w/reduced weight 
aluminum: move to exit w/reduced weight 
beryllium: move to exit w/reduced weight 
single-crystal filter: move to exit w/reduced weight 
multi-slit collimator, vertical: selects subregion w/o moving 
multi-slit collimator, horizontal: selects subregion w/o moving 
crystal monochromator: reflect from surface or move to exit, and 
rotate coordinates 
toroidal mirror: region divided into subregions by toroidal 
mirror: move to exit w/reduced weight 
blade or disk chopper: move to exit OR select subregion 
gravity focuser: selects subregion without moving 
removable beamstop: set weight=0 if not transmission mode 
fixed-Q or hard-sphere scatterer: transmitted or scattered 
particle moves to exit with modified weight 
isotropic scatterer with spectrum of energy changes: transmitted 
or scattered particle is moved to exit with modified weight 
inelastic scatter using S(alpha,beta) from MCNP: transmitted or 
scattered particle is moved to exit with modified weight 
reflectometry, multilayer: reflect from surface w/o moving, 
same weight if transmitted or reduced weight if scattered 
general powder scatterer: transmitted or scattered particle moves 
to exit with modified weight 

C 

C 

C 

C 

single detector: determine detection probability 
linear detector, vertical: determine y-bin and probability 
linear detector, transverse: determine x-bin and probability 
2-dimensional detector: determine x- and y-bins and probability 
linear detector, longitudinal: determine x-bin and probability 
source size and phase space: weight=0 if outside surface 

P. A. Seeger, April 20, 1994 
. . . (modification history) 
13 May 1998: subtype 32.2, 30.1, 30.2, 34.1, 36.1 [LLD,PAS] 

Definitions of STRUCTURES: 
IMPLICIT NONE 
INCLUDE 'mc_geom.inc' 
INCLUDE 'mc_elmnt.inc' 
INCLUDE 'constant.inc' 

Variables in calling sequence: 
PART = record containing description of particle (input/output) 
EXDIST = distance to exit surface particle is aimed at (m) (input/output) 
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C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 

PARAMS = array with description of what is in this region (input) 
GEOM = structure with all surface and region definitions (input) 
IREG = region number of device, or subregion within device (input/output) 
JSURF = surface number, if particle is initially on surface (input) 
KSURF = surface number that particle is pointed toward (input/output) 
NAME = name of region, used as file name for type 34 (input) 
TRANSMIT = flag to compute transmission of sample types 30-39 (input) 
FLAG = flag set to .FALSE. if (e.g.) chopper in wrong frame (output) 
PART-2 = description of particle created by operation (output) 
DET_WT = statistical weight of detected particle (output) 
IX, IY = position bin numbers of detected particle (output) 
ISEED = random-number generator seed (input/output) 
RECORD 
RECORD 
REAL*4 
INTEGER 
CHARACTER 
LOGICAL 

C 
C Externals: 

/PARTICLE/ PART, PART-2 
/MC_GEOM/ GEOM 
PARAMS(O:*), EXDIST, DET_WT 
IREG, JSURF, KSURF, IX, IY, ISEED 
NAME*40 
TRANSMIT, FLAG 

C ANGLI ANGTORUS ATTEN_Al ATTEN_Be ATTEN_X DET_ZD DISTORUS 
C DTOEX ELSCAT GET-RHO GRAV_FOC KERNEL LMONOCRM LORRAND 
C LREFLCT MOVEX NEXTRG ORRAND PLEXP PLNORM PLQSPHR 
C POWDER RAN REFLAYER RFLN SNELL TESTIN XCHOPPER 

REAL*4 ATTEN_Al, ATTEN_Be, ATTEN_X, DET_2D, DISTORUS, GRAV_FOC,& 
& PLEXP, PLNORM, PLQSPHR, RAN, REFLAYER, XCHOPPER 
COMPLEX*8 GET-RHO 
INTEGER NEXTRG 
LOGICAL LMONOCRM, LORRAND, LREFLCT, TESTIN 

c-- 
Local variables: 

REAL*4 
& 
& 
& 
COMPLEX 
INTEGER 
LOGICAL 
& 

SAVE 
& 
& 
DATA 
& 

NSIG, LAMBDA, XC, YGF, X, Y, D, TRANPROB, ATTEN, & 
ALPHA, SLIT, DELTA, TAPER, ZENTER, SIN-PHI, COS_PHI, & 
COS_TH, SIN_TH, V, AP, BP, CP, REFPROB, F, Q, KZ, ENO, & 
ENl, EN2, TWOSINTH, SIGSCAT, SIGABS, S_MULT, RATIO 
CXRATIO 
I, ITYPE, NREG, SUBTYPE, JINDX, JTYPE, KINDX, KTYPE 
LOPENING, LGF, LMULTX, LMULTY, LOPEN, DONE, VERTICAL, & 
INSIDE 

LGF, LMULTX, LMULTY, YGF, SLIT, DELTA, TAPER, & 
ZENTER, SIN-PHI, COS_PHI, NREG, ATTEN, ALPHA, LAMBDA, Q, & 
ENO, TWOSINTH, TRANPROB 
LGF, LMULTX, LMULTY, YGF,SLIT/ & 
.FALSE.,.FALSE.,.FALSE.,O., 0. / 

PART_2.WT = 0. 
DET_WT = 0. 
FLAG = .TRUE. 

ITYPE = PARAlaS 
IF (ITYPE .EQ. 0) THEN 

Material is total absorber 
EXDIST = 0. 
PART.WT = 0. 

ELSE IF (ITYPE .EQ. 1) THEN 
Material is amorphous unpolarized 
NSIG = PARAMS(NSIGMA0) + PARAMS(NSIGMAV)/SQRT(PART.VX**2 + & 
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& 

IF 
PART.VY**2 + PART.VZ**2) 

(NSIG .GT. 0.) THEN 
IF (NSIG*EXDIST .LT. 12.) THEN 

PART.WT = PART.WT * EXP(-EXDIST*NSIG) 
ELSE 

PART.WT = 0. 
END IF 

END IF 
C 

ELSE IF (ITYPE .EQ. 11) THEN 
C Region contains a multi-slit collimator with vertical blades 

LMULTX = .TRUE. 
C Save parameters to use when 

NREG = IREG 
DELTA = PARAMS(C_DELTA) 
TAPER = PARAMS(C_TAPER) 
ZENTER = PARAMS(C_ZENTER) 
SIN-PHI = PARAMS(B_SIN_PHI) 
COS_PHI = PARAMS(B_COS_PHI) 

exiting region 

C Translate particle into central slit 
IF (TAPER.EQ.0. .OR. PART.Z.EQ.ZENTER) THEN 

SLIT = ANINT(PART.X / DELTA) 
PART.X = PART.X - SLIT*DELTA 

ELSE 
C Need to account for taper when determining slit number 

SLIT = ANINT(PART.X / (DELTA-TAPER*(PART.Z-ZENTER))) 
PART.X = PART.X-SLIT*(DELTA-TAPER*(PART.Z-ZENTER)) 

END IF 

C 

C 

IF (SIN-PHI .NE. 0.) THEN 
Element is a bender; rotate velocity vector half the angle 
V = PART.VX 
IF (PART.VZ .GT. 0.) THEN 

C Entering in proper direction, rotate CCW (if phi > 0.) 
PART.VX = COS_PHI*V - SIN_PHI*PART.VZ 
PART.VZ = SIN_PHI*V + COS_PHI*PART.VZ 

ELSE 
C Entering backwards, shift CW instead of CCW 

PART.VX = COS_PHI*V + SIN_PHI*PART.VZ 
PART.VZ = -SIN_PHI*V + COS_PHI*PART.VZ 

END IF 
END IF 

C May be as many a five sub-regions; find which one 
KSURF = JSURF 
DO 1=1,5 

IF (TAPER .NE. 0.) THEN 
Tapered slits, also need to rotate particle velocity vector 
COS_TH = l.-0.5*(SLIT*TAPER)**2 
SIN_TH = SLIT*TAPER*COS_TH 
V = PART.VX 
PART.VX = COS_TH*V + SIN_TH*PART.VZ 
PART.VZ = -SIN_TH*V + COS_TH*PART.VZ 

END IF 

IF (TESTIN(PART, GEOM, IREG+I, JSURF)) THEN 
IREG = IREG+I 
RETURN 

END IF 
END DO 
IREG = 0 
RETURN 
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ELSE IF (ITYPE .EQ. 13) THEN 
C Region is a crystal monochromator with mosaic spread 

IF (LMONOCRM(PART, PARAMS, GEOM.SURFACE(JSURF), & 

& COS_TH, AP, BP, CP, ISEED)) THEN 
CALL RFLN(PART, COS_TH, AP, BP, CP) 
EXDIST = 0. 

C Still on same surface, flag reflection with - sign 
KSURF = - JSURF 

ELSE 
C No reflection; move to exit surface before rotating coordinates 

CALL MOVEX(PART, EXDIST) 
END IF 
IF (PARAMS(M_SIN_2TH) .NE. 0.) THEN 

C Redefine instrument axis; rotate velocity vector 
X = PART.X 
V = PART.VX 
IF (PART.VZ .GT. 0.) THEN 

C Moving in proper direction, rotate CCW (if 2theta > 0.) 
PART.X = PARAMS(M_COS_2TH)*X & 

& -PARAMS(M_SIN_2TH)*(PART.Z - PARAMS(M_ZO)) 
PART.Z = PARAMS(M_ZO) + PARAMS(M_SIN_2TH)*X & 

& +PARAMS(M_COS_2TH)*(PART.Z - PARAMS(M_ZO)) 
PART.VX = PARAMS(M_COS_2TH)*V-PARAMS(M_SIN_2TH)*PART.VZ 
PART.VZ = PARAMS(M_SIN_2TH)*V+PARAMS(M_COS_2TH)*PART.VZ 

ELSE 
C Moving backwards, shift CW instead of CCW 

PART.X = PARAMS(M_COS_2TH)*X & 
& +PARAMS(M_SIN_2TH)*(PART.Z - PARAMS(M_ZO)) 

PART.Z = PARAMS(M_ZO) - PARAMS(M_SIN_2TH)*X & 
& +PARAMS(M_COS_2TH)*(PART.Z - PARAMS(M_20)) 

PART.VX = PARAMS(M_COS_2TH)*V+PARAMS(M_SIN_2TH)*PART.VZ 
PART.VZ = PARAMS(M_SIN_2TH)*V+PARAMS(M_COS_2TH)*PART.VZ 

END IF 
END IF 

C 

FLAG = NINT((PART.TOF-.5*(PARAMS(CHP_OPEN) + & 
& PARAMS(CHP_CLOSE))) / PARAMS(CHP_PERIOD)) .EQ. 0 

ELSE 
C Didn't make it through this chopper opening 

KSURF = JSURF 

c 

ELSE IF (ITYPE .EQ. 20) THEN 
C Region contains a disk or blade chopper; find location of edge 

XC = XCHOPPER(PART.TOF,PARAMS(CHP_OPEN),PARI1S(CHP_CLOSE), & 
& PARAMS(CHP_JITTER), PARAMS(CHP_VEL), & 
& PARAMS(CHP_PERIOD), LOPENING, ISEED) 

SUBTYPE = NINT(lO.*(PARAMS(O) - 20.0)) 
IF (IAND(SUBTYPE,l) .EQ. 0) THEN 

C Chopper is moving horizontally, compare to PART.X 
X = PART.X 

ELSE 
C Chopper is moving vertically, compare to PART.Y 

X = PART.Y 
END IF 
LOPEN = ((X .LT. XC) .XOR. (PARAMS(CHP_VEL) .GT. 0.)) & 

& .XOR. LOPENING 
C If counter-rotating chopper, also test absolute values 

IF (SUBTYPE.GE.2 .AN'D. ABS(X).GT.ABS(XC)) LOPEN = .FALSE. 
IF (LOPEN) THEN 
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ELSE IF (ITYPE .EQ. 36) THEN 
C Powder sample with Bragg scattering 

IF (TRANSMIT) THEN 
C Save incident particle and wavelength for scattering 

PART-2 = PART 
LAMBDA = HOVERM / SQRT(PART_VX**2 i PART.W**2 + PART_VZ**2) 

C Transmitted particle has reduced weight, get attenuation terms 
CALL POWDER(PARAMS, LAMBDA, SIN_TH, SIGSCAT, SIGABS, ISEED) 
ALPHA = lOO.*(SIGSCAT + SIGABS) 
TRANPROB = EXP(-ALPHA*EXDIST) 
PART.WT = PART.WT * TRANPROB 

C Scattered (or absorbed) particles have the rest of the weight 
PART_2.WT = PART_2.WT * (1. - TRANPROB) * & 

& SIGSCAT/(SIGSCAT+SIGABS) 
ELSE 

C Prepare for multiple scattering; where was the interaction? 
D = PLEXP(ALPHA, EXDIST, ISEED) 
CALL MOVEX(PART, D) 

C Choose angle from possible Bragg angles 
CALL POWDER(PARAMS, LAMBDA, SIN_TH, SIGSCAT, SIGABS, ISEED) 

C Find new velocity vector 
TWOSINTH = 2.*SIN_TH 
IF (IAND(SUBTYPE,l) .EQ. 0) THEN 

C Random azimuthal angle in 2 pi 
CALL ELSCAT(PART.VX, PART.VY, PART.VZ, TWOSINTH, ISEED) 

C Determine probability of scattering again 
D = PLEXP(ALPHA, O., ISEED) 

ELSE 
C Limit the azimuthal angle 

CALL ELSCAT2(PART.VX, PART.VY, PART.VZ, TWOSINTH, & 
& PARAMS(PHI_MIN),PARAMS(PHI_MAX),FLAG,ISEED) 

PART.WT = PART.WT * (PARAMS(PHI_MAX) - PARAMS(PHI_MIN)) 6r 
& /TWOPI 

C No multiple scattering in this case 
D = 0. 

END IF 
C Determine probability of scattering again before escaping region 

CALL DTOEX(PART, GEOM, IREG, 0, KSURF, EXDIST) 
DO WHILE (D.LT.EXDIST .AND. D.GT.0.) 

CALL MOVEX(PART, D) 
C Get another Bragg angle (same attenuation length) 

CALL POWDER(PARAMS, LAMBDA, SIN_TH, SIGSCAT, SIGABS, & 
& ISEED) 

IF (RAN(ISEED) .LT. SIGABS/(SIGSCAT+SIGABS)) THEN 
C Particle has been absorbed 

PART.WT = 0. 
D = 0. 

ELSE 

IF (TESTIN(PART, GEOM, IREG+I, x~JRF)) THEN 
Next region is description of chopper blade material 
IREG = IREG+l 
RETURN 

ELSE 
Chopper blade is opaque absorber 
EXDIST = 0. 
PART.WT = 0. 

END IF 
END IF 

C 
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TWOSINTH = 2.*SIN_TH 
CALL ELSCAT(PART.VX, PART.VY, PART.VZ, TWOSINTH,ISEED) 
CALL DTOEX(PART, GEOM, IREG, 0, KSURF, EXDIST) 
D = PLEXP(ALPHA, O., ISEED) 

END IF 
END DO 

END IF 
C 

ELSE IF (ITYPE .EQ. 43) THEN 
C Detector, 2-dimensional position sensitive 

DET_WT = DET_2D(PART, PARAMS, IX, IY, ISEED) 
C 

ELSE IF (ITYPE .EQ. 70) THEN 
CALL TYPE_70(PART, EXDIST, PARAMS, NAME, TRANSMIT, FLAG, & 

& PART_2, ISEED) 
RETURN 

C 
ELSE IF (ITYPE .EQ. 75) THEN 

CALL TYPE_75(PART, EXDIST, PARAMS, GEOM, IREG, JSURF, KSURF, & 
& NAME, TRANSMIT, FLAG, PART_2, DETWT, IX, IY, ISEED) 

C 
END IF 

C 
C Move the particle 

IF (EXDIST .GT. 0.) CALL MOVEX(PART, EXDIST) 
C 

IF (DETWT .NE. 0.) THEN 
C Particle was detected, so check detector efficiency 

IF (PARAMS(D_ALPHA_lA) .GT. 0.) THEN 
LAMBDA = HOVERM / SQRT(PART.VX**2 + PART.W**2 + PART_VZ**2) 
DETWT = DET_WT*(l. - EXP(-LAMBDA*PARAMS(D_ALPHA_lA))) 

END IF 
PART.WT = PART.WT - DET_WT 

END IF 
C 

RETURN 
C 
C Need special actions when leaving some regions 
C 

ENTRY EXIT_REG( PART, GEOM, IREG, JSURF) 
C 

IF (LMULTX) THEN 
C Crossing a surface in a multi-slit (vertical) device 

IF (NEXTRG(PART, GEOM, NREG, JSURF) .EQ. NREG) THEN 
C Still within device, shifting to neighboring slit 

IF (PART.X .GT. 0.) THEN 
D = +l. 

ELSE 
D = -1. 

END IF 
SLIT = SLIT + D 
PART.X = PART.X - D*DELTA 
IF (TAPER .NE. 0.) THEN 

PART.X = PART.X + D*TAPER*(PART.Z - ZENTER) 
COS_TH = 1. - 0.5*TAPER**2 
SIN_TH = D*TAPER*COS_TH 
V = PART.VX 
PART.VX = COS_TH*V + SIN_TH*PART.VZ 
PART.VZ = -SIN_TH*V + COS_TH*PART.VZ 
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